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Abstract--This paper addresses the problem of optimizing the plate separation of an open, parallel-plate 
channel thai: is cooled by natural convection air flow. The plates are symmetrically heated by uniform heat 
flux. The I-shaped computational domain comprised two subdomains : the actual physical domain between 
the plates, and two large rectangular reservoirs placed upstream of the entrance and downstream of the 
exit. The aggregate subdomains accommodated the diffusion phenomena by momentum and energy that 
occur outside the channel. The full elliptic Navie~Stokes and energy equations are solved numerically in 
the composite domain. Correlations of the optimal values of the plate spacing as a function of the GrL 
number and of the induced mass flow rate, as well as thermal and velocity profiles, are presented for air. 
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1, INTRODUCTION 

Packaging of  electronic components poses severe 
demands and constraints for their efficient cooling 
and of course necessitates detailed knowledge of the 
optimization of the heat dissipation by natural  con- 
vection inside vertical, parallel-plate channels. 

Bar-Cohen and Rohsenow [1] developed a Chur- 
chill-type correlation equation for the natural  con- 
vective heat transfer coefficient covering the two 
asymptotes, one for a fully developed channel regime 
and the other for a single plate boundary  layer regime. 
Previous knowledge of the natural  convective heat 
transfer coefficient for each asymptote was indis- 
pensable. An opt imum plate-to-plate spacing, b/L, 
was then extractecl from the composite correlation 
equation by maximizing the total heat dissipation 
through the channel. Anand  et aL [2] determined the 
optimal spacing b/L numerically by calculating the 
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flOW and temperature distribution based on a finite- 
difference solution to the parabolic version of the con- 
servation equations. These authors utilized a com- 
putational domain that coincided with the physical 
domain in conformity with the adopted model. Due 
to the parabolic nature of the equations, diffusion 
phenomena by both momentum and energy that occur 
outside of the channel were excluded. Also, the aspect 
ratio b/L was made an independent parameter by 
defining a Grashof  number  in terms of the channel 
length L. In contrast with the work by Bar-Cohen and 
Rohsenow [1], knowledge of the natural  convective 
heat transfer coefficient was not  known a priori and 
obviously it emerged naturally as a by-product of the 
calculation procedure. For  completeness, it should be 
added that Bodoia and Osterle [3] and Levy [4] did 
some preliminary calculations, conducive to the esti- 
mat ion of opt imum spacings between vertical chan- 
nels with limited success. 

From a historical standpoint,  the first investigation 
on natural  convection flows through heated vertical, 
parallel-plate channels combining the full elliptic 
character of the conservation equations with the en- 
larged computat ional  domains are those of Kettle- 

993 



994 B. MORRONE et al. 

NOMENCLATURE 

a thermal diffusivity [m 2 s l] 
b channel gap [m] 
g gravity acceleration [m S -2] 
Grb Grashof number, equation (1) 
GrL Grashof number, equation (9) 
hx local convective coefficient 

[W m-2 K -1 ] 

k thermal conductivity 
[W m -1 K - q  

L channel height [m] 
Lx  height of the reservoir [m] 
L r width of the reservoir [m] 
Nux local Nusselt number, equation (6) 
NUb mean Nusselt number, equation (7) 
NuL mean Nusselt number, equation (8) 
p pressure [Pa] 
P dimensionless pressure, 

equation (1) 
Pr Prandtl number 
qw wall heat flux [W m -2] 
t time [s] 
u, v velocity components along x-, y- 

directions [m s-1] 
U, V dimensionless velocities, equation (1) 
x, y Cartesian coordinates, Fig. 1 [m] 
X, Y dimensionless coordinates. 

Greek symbols 
fl volumetric coefficient of expansion 

[K l] 
A difference between two values 
e convergence criterion 
r/ dummy variable 
v kinematic viscosity [m 2 S-1] 

stream function [m E s-1] 
dimensionless stream function, 
equation (1) 

4~ dimensionless temperature, equation 
(1) 

p density [kg m 3] 
a relaxation parameter ~SOR) 

dimensionless time, equation (1) 
co vorticity [s l] 
f2 dimenionless vorticity, equation (1). 

Subscripts 
oo free stream condition 
b refers to the channel gap 
L refers to the channel height 
opt optimal value 
w wall 
Wl left wall 
w2 right wall. 

borough [5] and Nakamura et al. [6]. Recently several 
studies by Chang and Lin [7], Naylor et al. [8], Martin 
et al. [9], Shyy et al. [10] and Manca et al. [11] have 
elaborated on this kind of combined mathematical 
model/computational domain using computer inten- 
sive calculations and sophisticated equipment. 

Despite the fact that the above-cited references have 
stressed the paramount importance of the realistic 
elliptic model vs the idealistic parabolic model for the 
conservation equations attached to extended com- 
putational domains, none of them examined aspects 
associated with the optimization of the plate spacing 
and the maximization of the total heat transfer. This 
single aspect constitutes the central motivation for 
undertaking this project with a particular emphasis 
on air flows applied to electronic cooling. Accord- 
ingly, an elliptic model was preferred here, to analyze 
the heat and air flow inside a vertical channel under 
the action of symmetric heating. The computational 
domain comprised the actual physical domain 
between the two channel plates, as well as two rela- 
tively large domains placed upstream of the channel 
entrance and downstream of the channel exit. These 
I-type composite domains resemble open, unbounded 
spaces that serve to accommodate the diffusion 
phenomena by both momentum and energy that could 
occur outside of the channel. Using a finite-difference 

discretization technique, the system of conservation 
equations has been solved numerically providing the 
velocity, pressure and temperature fields of the air 
medium. The computed results have been post-pro- 
cessed and analyzed from an optimization perspective. 
The optimum spacing, (b/L)opt, has been presented in 
graphical form as a function of the Grashof numbers, 
GrL, for a fixed Pr = 0.71, and a correlation between 
the same variables has been proposed. Further, a cor- 
relation between the dimensionless mass flow rate and 
the thermo-geometrical parameters involved in the 
analysis, i.e. GrL and b/L, has been presented. 

2. DESCRIPTIVE EQUATIONS 

A vertical, parallel-plate channel where both plates 
are equally heated with uniform flux qw is depicted in 
Fig. 1 (a). The imbalance between the temperature of 
the ambient air T®, and the temperature of the heated 
plates draws a mass of fluid into the vertical channel. 
The dimensionalization process of the variables relies 
o n  : 

x y tv 
x=~ r=~ ~=b~ 
ub vb ( p - p ~ ) b  2 

U = - -  V = - -  P =  
v v p v  2 
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Fig. 1. Sketch of the system : (a) physical domain ; (b) com- 

putational domain. 

o~I ' o4 
~P=~Fw2 o x - O  ~ = 0  at HI a n d J K  

02~g 0 0f~ 04) 
OX 2 =  ~ = 0  ~ = 0  a t F G .  (5) 

The local convective coefficient can be computed 
from the local Nusselt number 

hxb 1 
U u x -  k ~bw' (6) 

From here, two mean Nusselt numbers can be defined. 
One based on the plate separation, b : 

hb b f ~/b 
N U b -  k L N u x d X  (7) 

0 k ( T -  09 To~ ) 
vb ~ d~ qwb 

gflqw b4 V 
Gr b = - -  Pr = - 

kv 2 a 
(1) 

permitting one to write the 2-D Navier-Stokes and 
energy equations as 

c~z - ~ - +  c~ Y = v  ~ L - - u r b ~  (2) 

g2kIJ 02kI / 
- - -  ~ ~ (3) (~X 2 63 y2  

Oc~ O(U~a) O(VO) V2~.  (4) 
a-~ + - ~ 2 -  + a ~  = 

As is customary, the physical properties of the fluid 
are taken as averaged over temperature range of oper- 
ation, with the exception of the density in the buoy- 
ancy term, to comply with the Boussinesq approxi- 
mation. 

The imposed boundary conditions, rewritten of 
course in terms of stream function and vorticity, with 
reference to the Fig. 1 (b), are : 

O~F 0f~ 
O y - 0  ~ = 0  ~b=0 a t A B a n d K L  

O~ 3fl 
0 ~ = 0  ~ = 0  ~b=0 a t A L  

~. '=q 'w,  ~--~:=0 } - ~ = 0  at BC and DE 

at CD 

~P=~*2 ~ : = 0  ~ = 1  a t I J  

O2~F 0 Ofl 0q~ 
OY 2 - ~ = : 0  ~ = 0  at EF and GH 

and the other based on the channel height, L : 

h-L L 
NUL -- k b Nub (8) 

and a Grashof number based on the plate height L 
defined as : 

L 4 
GrL = Grb ~ .  (9) 

3. NUMERICAL SCHEME 

The numerical computation has been carried out 
by means of the finite-difference method, using the 
control volume approach. 

The vorticity and energy equations (2), (4) were 
solved by the alternating-direction implicit (ADI) 
method. This method transforms the discretized PDEs 
into a tridiagonal, linear system of algebraic equations 
that can be easily solved by the Thomas algorithm. 
Further, the second upwind scheme (see ref. [12]) has 
been employed to discretize the convective derivatives, 
while for the diffusive derivatives a classical three- 
point central scheme has been adopted. The con- 
vective terms were linearized following the iterative 
procedure suggested by Roache [13]. The stream func- 
tion has been determined by the successive line over- 
relaxation (SLOR) method involving an optimum 
relaxation factor a of about 1.7. Once the equations 
of vorticity, stream function and energy are solved, 
then the convergence patterns for the time step have to 
be checked. Thus, the following convergence criterion 
chosen for steady-state 

I rl''+ ' - ~Tu 
.+1 I .,,j [max < ~ (lO) 

has to be verified at every (i,j) node, where 1/ rep- 
resents ~ or q~ and e was set equal to lO -s. The com- 
putational procedure can be implemented by guessing 
an initial value for the stream function ~Ow2, at the 
right solid wall 2, together with ~,~ = 0 at the left 
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solid wall 1. Thus, under these circumstances a forced 
convection flow with a reasonable mass flow rate is 
initially imposed. The selected value of  the mass flow 
rate accounting for its limiting steady-state value is 
verified on a global basis by integrating the momen-  
tum equation along the centerline of  the channel once 
the steady-state condit ion is attained. 

For  confined natural convection flows, far away 
from the entrance and exit of  the channel, the pressure 
must be equal to that of  the undisturbed environment. 
Then, for the chosen reduced computat ional  domain 
the pressure relation 

AP = P ( L x + L ) - - P ( - - L x  ) = 0 (11) 

holds. Of  course, this equality is translated into an 
inequality. In the latter, the second member,  rewritten 
as e is set equal to 5 × 10 -~. If  the guessed value ~/w2 
does not  satisfy the equation (11), then a new value 
of  ~/w2 is selected and the procedure repeated again, 
until equation (11) holds. 

As far as the sensitivity of  the grid is concerned, it 
depends on two components :  the number of  nodes 
and the dimensions of  the reservoirs. Bearing this in 
mind, preliminary calculations have been carried out 
to ensure grid independency of  the solution. After  
carefully testing several combinations of  nodes in the 
grid, it was concluded that either 31 x 31 or 31 x 25 
grid nodes inside the channel have to be employed to 
satisfy accuracy requirements. Also, these grids 
guaranteed a global energy balance inside the channel 
with an accuracy not greater than 0.5%. 

Similar numerical experiments have been per- 
formed to estimate the minimum vertical and hori- 
zontal sizes of  the reservoirs which do not affect the 
velocity, pressure and temperature fields inside the 
channel with an approximation of  not  more than 10 -4. 
Fixing the fluid to air (Pr = 0.71) and depending on 
the Grashof  number and the aspect ratio selected, the 
dimensions Lx and L r  range from 2.0 to 4.0 and 7.0 
to 9.0, respectively. 

The numerical procedure was first tested in ref. [11] 
and its outcome when compared with other numerical 
and experimental results, produced satisfactory agree- 
ment. 

4. RESULTS AND DISCUSSION 

In the following paragraph the results are presented 
for air as working fluid (Pr = 0.71). The analysis has 
been carried out for a range o f  GrL spanning between 
102 and 105. 

Figure 2 displays the variation of  the local Nusselt 
numbers with the axial coordinate X parametrized by 
the aspect ratio, b/L, at two meaningful values of  GrL, 
in the range investigated in this study. It can be noticed 
in both the figures that the family of  local Nusselt 
numbers, Nux, exhibit their characteristic monotonic  
decreasing behavior with X. It is important  to reco- 
gnize that Nux does not  begin with a infinite value at 
the channel inlet, X = 0. Instead, they begin with a 
realistic finite value due to the elliptic model  chosen. 
The boundary layer approximation of  the con- 
servation equations impedes the utilization of  the field 
variables in an appropriate way at the inlet region. 
The physical model  adopted in this study takes into 
account the momentum and thermal diffusion in the 
axial direction these effects can be appreciated at the 
channel entrance and even at the channel exit. 

The areas below the local Nusselt number curves 
for each b/L value, are the mean Nusselt number 
defined in equation (8). It can be pointed out that as 
b/L increases the curves tend to move upward because 
of  an increment in the nondimensional induced mass 
flow rate, as can be noticed in Fig. 3. This figure 
illustrates the dimensionless mass flow rate as a func- 
tion of  the aspect ratio, b/L, for different Grashof  
number values. The increase in the induced mass flow 
rate is caused by two effects : the growth of  the cross- 
sectional area of  the channel, viz. b, and the increase 
of  the mean velocity of  the fluid entering the channel. 
These two combined effects do not necessarily imply 
an increase in the mean dimensional velocities inside 
the channel. Thus, for all GrL numbers examined the 
area under the curves shown in Fig. 2 is magnified up 
to a fixed value of  b/L. 

A correlation between the dimensionless flow rate 
and the thermo-geometrical  parameters involved in 
this study, i.e. GrL and b/L, has been obtained. The 
correlation, that holds in the range 10 ~ ~< Gr~ <~ 105 
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Fig. 2. Axial variation of the local Nusselt number at two Grr numbers and for several aspect ratios. 
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Fig. 3. Dimens ion less  induced m ass  flow rate vs aspect  ratio, 
at different GrL. 

and 0.2 ~< b/L <~ 3.0, with a regression coefficient 
g 2 = 0.993, is : 
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1~ ..... ~ i  ...................... i ...................... 

0,5 "" " . . . . . . . . . . . . . . . . . . .  
102 103 104 Gr, 10s  

L ,  

Fig. 5. Opt imal  aspect  rat io b/L as a func t ion  o f  the GrL 
n u m b e r  compa red  to the results o f  A n a n d  et al. [2]. 

AW = 0.810-(GrL) °38' "(b/t) 1'7. (12) 

In accordance with the findings of  Bar -Cohen  and  
Rohsenow [1] and A n a n d  et al. [2], opt imal  values of  
the aspect ratio,  b/L, t ha t  render  m ax i m um  the values 
of  the mean  Nussel t  number ,  equat ion  (8), can be 
computed.  Figure 4 shows, in a sequential  manner ,  
the behav ior  of  the mean  Nussel t  number ,  NuL, as 
a funct ion of  the aspect rat io  b/L for the four GrL 
investigated in tl~Lis paper.  The associated opt imal  
values of  b/L, for which the mean  NuL is maximum,  
can be easily inferred f rom these figures. As b/L 
decreases f rom infinity, tha t  corresponds  to the single- 

plate limit, up  to a fixed value, there is an  increasing 
'chimney effect', tha t  draws more  fluid into the chan-  
nel. The pressure drops,  tha t  will be shown in Fig. 6, 
increase as b/L decreases, due to the increasing 
induced flow rate and  to the nar rowing  of  the channel  
gap, b, for fixed height  L. A n  op t imum balance 
between the increasing pressure drops  and  the increas- 
ing 'chimney effect' gives rise to the op t imum value of  
b/L, for each value of  GrL. Moreover ,  the thermal  field 
a t ta ins  the fully developed condi t ion  for which the 
mean  Nussel t  n u m b e r  decreases. In addi t ion,  it can be 
realized tha t  for large values of  the aspect rat io  b/L, 
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Fig. 6. Axial variation of the modified non-dimensional pressure along the centerline of the computational 
domain, at two GrL numbers and for several aspect ratios. 
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the mean Nusselt number tends to ones characterizing 
single-plate behaviour. 

Figure 5 and Table 1 have been prepared con- 
currently with the objective of  displaying the optimal 
aspect ratio (b/L)op, as a function of  the Grashof  
number, GrL, separately. These qualitative results 
indeed constitute the backbone of  this investigation. 
The results obtained from several runs have been fitted 
by a correlation between the (b/L)opt and the GrL with 
a regression coefficient R 2 = 0.999 : 

(b/Z)opt = 4.57 "(GrL) -°19z. (13) 

In the same figure the optimal values obtained in 
[2] are included for comparison purposes and the dis- 
crepancy between the two data sets is evident. For  all 
GrL, the optimal aspect ratios (b/L)opt computed in [2] 
overpredict the present results consistently. The order 
of  magnitude of  the relative errors is around 10%. 
Actually, from the standpoint of  packaging of  elec- 
tronic components,  a volume reduction of  about  10% 
may be viewed as a significant accomplishment. The 
physical interpretation of  these results may be con- 
ceived as follows. For  fixed values of  the wall heat 
flux, qw, the smaller the GrL, the smaller the height of  
the channel L, for fixed values of  b. Consequently, 
this gives rise to more pronounced diffusive effects. As 
already mentioned, these diffusive effects were not 
taken into account in ref. [2]. Besides, the authors 
imposed the pressure equal to the ambient one at both 
the inlet and exit of  the channel. 

In Fig. 6, where the modified nondimensional pres- 
sure drops along the centerline of  the computat ional  
domain, at two GrL numbers and for several aspect 

Table 1. Optimal values of the channel spacing 

GrL 
(b/L)opt 10 z 103 104 105 

Present work 1.90 1.20 0.78 0.51 
ref. [2] 2.14 1.35 0.85 0.54 
% Error 12.6 12.5 9.0 5.9 

ratios, are shown, the dramatic reduction of  the pres- 
sure PL, that takes place upwind of  the channel inlet, 
can be seen. Therefore, we can convincingly conclude 
that the usage of  the ambient pressure at the channel 
inlet, as well as at the channel exit, is an inaccurate 
hypothesis. More,  it can be noted, as previously men- 
tioned, that there is an increase in the pressure drops 
as the b/L decrease, i.e. as the channel gap is narrowed, 
for fixed L. 

Alternatively, the idealization of  either parabolic or  
uniform velocity profiles at the channel inlet can be 
incorrect or, at least, not  very accurate for every value 
of  the Grashof  number. In fact, this aspect can be 
corroborated in Fig. 7, where the velocity profiles are 
drawn at different heights of  the channel, for the four 
values of  the GrL. 

Figure 7 shows the evolution of  the dimensionless 
velocity profiles at different channel heights with the 
four investigated GrL numbers, the aspect ratios being 
1.9, 1.2, 0.8 and 0.5, i.e. close to the optimal values. 
These figures elucidate the fact that the inlet profile at 
GrL = 102 is closer to a parabolic one than a uniform 
one. In contrast, at GrL = 105 the velocity profile tends 
to a uniform one. This behaviour can be explained by 
the mere presence of  the terms accounting for the 
momentum diffusion. In actuality, the disturbance 
produced by the plates of  the channel diffuses 
upstream more vigorously as GrL diminishes, making 
the velocity profile less uniform. 

Dimensionless temperature profiles across the chan- 
nel spacing, at different heights and at the same four 
GrL numbers and the corresponding optimal b/L, are 
shown in Fig. 8. Here, it can be observed that as GrL 
diminishes, the temperature profiles at the channel 
inlet exhibit a temperature value where the core of  the 
working fluid is nearly at the ambient temperature, 
viz. undisturbed. This is caused by the presence of  the 
thermal diffusive effects that tend to decrease as GrL 
increases, i.e. as L is enlarged for a fixed channel 
gap b. Furthermore,  the same diffusive thermal effects 
bring a reduction of  the temperature close to the wall 
with respect to the immediately upstream section. 



O p t i m u m  plate separa t ion  in vertical channels  999 

i i U 
. . . . . . . . . . . . .  , 5 0  

I ' " l ' " " "  ]GrL= lO'OI'//" i ................ i'~/~'ii!~ ............. i'""~'1 
5 " 0 I / 1 " ' "  ..... l ................. i b / L , =  1 +  .............. ! .......... \~\'] 5 . 0  

:' i i i i x! o.o  
0.0 0 .2  0.4 0 .6  0.8 y 1.0 0 .0  0.2 0.4 0 .6  0.8 Y 1.0 

20 0 I ~ ~ I I I I I I I ] ' C )  ....... { . . . . . . . . . .  "::': ............. 40 .0  ~ :  . 

......  -\YI 

lOOf1[-, i ........ .................. i-h&---°-:, -8.- ............. i - \ \ - t  ........ :o.o 
• ~ i i i i t 

0.O. 0 0  0.2 0.4 0 .6  0.8 y 1.0 
0 0 

" 0 . 0 0 . 2  0.4 0 .6  0.8 y 1.0 

Fig. 7. Dimensionless  velocity profiles as a funct ion  of  the Y coordina te  a t  different s ta t ions  : (a) GrL = 10 ~, 
b/L = 1.9 ; (b) Grr = 10 3, b/L = 1.2 ; (c) Gr~ = 10 4, b/L = 0.8 (d) Gr~ = 10 ~, b/L = 0.5. 

0.3.. " • i • • " ! " • • i " " " ! " • .: 

¢ ~ ' : ~ " 0  5b  ................ , u r L =  i t r  .............. ~ ...... .y~. . ~ .  i i ..'7 : 
i i b /L  = 1 . 9  i : ' . ~  i 

..... x . : i  ................ ................ i ................. i ; . z ;  ,. ".' i ! ,." ,," 
~,.x ............. % , , . 0 . 5 2 " :  .............. : ................ !i .............. ...... ~ . 0 2 6 / ~ : - '  ............ r 

~ ,  i ".."x~.." I .L,~.. '" : . ~ , 7 :  
0 .1  ..... ',ff<:--i ....... : . , - ~ : - . - . . . ' "  ...... f.:~y--.---: 

-;.  --,.. . . . . . . .  .p" ~." . 

. . . . . . . . . . .  . . . . . . . . . . .  

0.~ . . . . . . .  ~ . . . . . . .  i . . .  

0.0 0 .2  0.4 0 .6  0.8 y 1.0 

: i i ; i ; 
~;;. ............ - ................ J.GrL= 10 4 .............. - . . . .C) . j j  

0.3 :~,.. 1.21' ib/l_,- 0 8 ! , C  
~ ,  : ' " \  :~-------: ................. ! ................. ! ................ ÷-- -7:  ~ . -":: '  :"" 

i ' . , ' ~ i  i .i ........... ~. . . : : . . . . . .  
° 2 r  ....... ........... l ................ i :: 

.: ............ ::-.....,X;.....i... 1.25.......::....:/....,. : ...... ......: 

",-x-X=0.0'" ............ ~ - - - - : - ' . ~  " :  ,,v--.--,.,'" 
0 . 1  X . ' , /  i " ' .  i 0 625  i ."'" • ~ - / u ' t ~ a  , / : .  

~ : :  ~ i "'.. ! :i'"'" i . ~  "i" 

0.0 0 .2  0.4 0.6 0.8 y 1.0 

. . . . . . .  i "  " "  i . . . . . . .  
0.3 ~ . . . .  ................................ G r . =  103 ............... -k~ol . . . . . . . . .  / 

~ i i ,.i~ r 
0.2 ......... :-,.%. ............... ! .................: ~. ! ................ ~.~'-.:. ......... 

".. i,~ i i...' : :  - " ~ t . . . +  
i ............. :'i'-'."'"~"~'"i'"'0.833 '" ............ i 
~,  ! ".. ~ . . :  0 . 0 2 7 8 , ' j .  

O. 1 - x .......... a......'.... ........ a ................. .: .......... :.....~ ....... ,- .- 

. ~  ........ 

0.0 . . . i . . . ~ . . . ~ . . . . . . .  

0.0 0.2 0.4 0 .6  0.8 1.0 
Y 

0 . 4 ~ "  " " ~ " " " ~ " " " i " " " ~ " " " : 

¢ ~: ............. ~ ................ G r t =  105 ................. id)7! 
0 3  :\-,.----1.933 .......... b / L = 0 . 5  ................. i ....... --;:/--: 

" ~ '  :;:....~..i ................. [ ................ i ................ i , Z / : i i  ,.i..: 

. . . . . . . . . . . . .  " . , i  . . . . . . . . . . . .  ~ i  . . . . . . . . . . . . . . .  , - - : f  . . . . . . . . .  !:: . . . . . . . . . . . .  -:: 
, i ' . . ~ :  .'! ,' 

O. 1 -~----X=O 0--", .......... - ................ -= .......... :-::.0.0667--/t-: 
, ' , /  "~ ' - . . .  i 1-° ! . . . . "  i ~ , ' ~  

o o ...... 
0.0 0.2 0.4 0.6 0.8 y 1.0 

Fig. 8. Dimensionless  tempera ture  profiles as a funct ion  of  the Y coord ina te  a t  different s ta t ions  : (a) 
GrL = 102, b/L = 1.9; (b) GrL = 103, b/L = 1.2; (c) GrL = 104, b/L = 0.8; (d) GrL = 105, b/L = 0.5. 



1000 B. MORRONE et al. 

5. CONCLUSIONS 

This paper reports results for the optimal aspect 
ratios of  vertical, symmetrically heated channels, that 
are cooled by the upflow natural convection of  air. 
Comparisons with a previous investigation show dis- 
crepancies in the optimal value of  b/L, that are mag- 
nified as GrL diminishes. The magnitudes of  the rela- 
tive errors range from 12.6% at Grc = 102 to 6% at 
GrL = 105. The deviations at small values of  GrL sug- 
gest that the momentum and thermal diffusive effects 
of  the conservation equations are of  paramount  
importance. This model  necessitates enlarged, I-type 
computational  domains. This is a realistic way to opti- 
mize the plate spacing of  a single channel, from a 
thermal point of  view. Correlations relating the 
induced mass flow rate as well as the optimal aspect 
ratio of  the channel, b/L, with the thermo-geometrical  
parameters involved in this study have been proposed. 
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